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by 
Bernhard  Dorsch*  and  Warner H. Miller 

Goddard  Space Flight  Center 

INTRODUCTION 

A coding scheme is described which is a concatenation of a biorthogonal  code with a gener- 
alized  Hamming code. (Concatenation is the  coding of a coded  signal.)  The  generalized  Hamming 
code is a systematic  code which has a Hamming distance of three and is described by using  ele- 
ments of a Galois  field GF(2 *). 

In this paper a calculation is made of the  probability of bit  error,  assuming a particular  de- 
tection  philosophy. A comparison,  with  respect to probability of bi t   error ,  of this coding scheme 
with a binary  symmetric uncoded  channel is made. With the  adopted  detection  philosophy, a trade- 
off between data confidence  and data quantity  can be controlled by the  experimenter.  The  design 
of the  encoder/decoder is also  described. 

This coding scheme  originated  from a coding effort as an  aid  to  the  infrared  interferometer 
spectrometer  experiment on Mariner Mars Probe 1971. This  scheme  gives the experimenter con- 
trol of (1) probability of bi t   error  and (2) data  quantity.  Also,  this  code  yields a higher  confidence 
level  for  data with respect  to  the  existing  Mariner  telecommunication  channel. 

CODING  TECHNIQUE 

This coding technique  links two codes, an inner and an  outer  code.  The  outer  coder  uses a 
generalized  Hamming  code,  while  the  inner  coder  uses a biorthogonal code. This linking  technique 
achieves  longer  codes  (blocks)  for which  the probability of error  in  some  cases can  be  decreased 
by at least two orders of magnitude  with  respect  to  the  inner  or  biorthogonal  code. 

In the  spacecraft,  the  outer  coder  accepts  serial  source  data  symbols  (bits) and reformats 
them  into  blocks of data  symbols  plus check symbols.  Each block (Figure 1) consists of k informa- 
tion  elements  (words) and two check  elements,  each  element of length S .  The  element  length is 
chosen to match  the  order of the  biorthogonal  code. 

'Now at  DFVLR, Institute for Satellite  Electronics,  Oberpfaffenhofen, West Germany. 
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Figure 1-Block  diagram for coding  technique. 

When decoding this  concatenated  code,  the  biorthogonal  (inner)  code is processed  first by 
cross-correlation followed by a maximum-likelihood  decision. When an error  is made,  it is on 
a word basis,  resulting  in  bursts of bit   errors.   These  burst   lengths  are  related to the  biortho- 
gonal  element  length.  For  this  reason,  the  outer  code w a s  designed as single-element-correcting. 

A detailed  description of the  biorthogonal code will  not  be given because  this is a relatively 
common  code (see  Reference 1). A description of the  generalized Hamming  code  follows. 

A NEW  GENERALIZED  HAMMING CODE 

The  generalized  Hamming  code is described  in  terms of elements of a Galois  field  GF(2") 
of two check elements; one which determines the  position of the  erroneous  element, and  one  which 
determines  its  error  pattern. 

The Code 

Each  binary word b = (b, , b, , . . - , bS ) is regarded as one  element b ( z )  = b, + b, z t . . . f b ~ ( ~ - 1 )  

of the Galois  field  GF(2'); z is defined as a root of the  primitive polynomial p( Z )  = 1 + b, z + b, z 2  

I ...b z s  over  GF(2). The  code is the  null  space of the  matrix 

H = [  0 1 1  
1 . . .  1 

1 1 2 2  . . .  zn-3 1 .  
The  generalized  Hamming  distance of this code is three  (each  code  word is separated by at  least 
three elenzelzts) because of the linear independence of every two columns of H. (The elements 1, z, 

2 2 , .  . . n -  3 are  distinct.)  This  requires ( n  - 3 )  5 ( 2 '  - 2 )  or  n ( ( 2 '  + 1). Since this code has 
distance  three,  it is one-element-error  correcting. 

For  example, i f  the  element has a length of six  symbols, the primitive polynomial is p( Z )  = 1 

t 2 t z6 over  GF(2) with the  null  space  matrix 

H i [  
0 1 1  1 

1 1 z z z  

2 



Encoding 

Code words  are  the  vectors a = ( a17 . , an )7 a v  of GF(2'), for which a . HT = 0; i.e., 

For example,  let a1 and a 2  be the  check  elements  and a,) a, a S 7  and a, the  information ele- 
ments. Define P, through P, and p, through p, as the  check  symbols  and dl through d,, as 24 in- 
formation symbols. 

a ,  = P, + P, z + P, 2, + P, 2 3  t p5 2 4  t p, 25 

a, = P, + p, z + p, z 2  + p, z 3  + p5 2 4  t p, 2 5  

a, = d l  f d, z + d, z 2  + d, z3 t d, 2 4  + d, = 5  

a ,  = d, + d, z + d, z 2  + d l ,  z3 t d l ,  2 4  t d l ,  z 5  

a s  d l ,  + d l ,  z + d l ,  z 2  + d l ,  z3 + d l ,  2 4  t d l ,  2 5  

a,  d l ,  + d,, z + d,, z 2  + d,, z3 + d 2 3  t d,, z 5  

Calculation of P and p using  Equations 1 and P( z )  = 1 + z + z 6  = 0 yields  the  parity  equations: 

p, = dl  + d, t d l ,  t d l ,  

P, = d, + d, + d l ,  + d,, 

P, = d, + d, + d, , + d,, 

3 
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and 

P, = dl ,  + d, f d, f d,, f d l ,  f d,, 

P, = d l ,  f d l ,  f d, + d, f d,, 

'5 = d20 ' ' d 5  

P, = d, f dl  f d l ,  + d Z l .  

Decoding 

Syndrome:  Let a '  = a + f = ( a l  f f 1 ,  . . , an + f ) be  the  erroneous block, where f represents 
the  error  pattern.  The  Syndrome q = a '  . HT of a linear  code is related to the  error  pattern f by 
the equation 

because a HT = 0. For  the  above  described  generalized  Hamming  code, 

and 

9, f ,  f f ,  ' f ,  2 f ... + f "  2 n - 3  . 

If q ,  # 0 ,  q, # 0 ,  an e r r o r  is detected.  For q, = q ,  = 0 ,  two situations  are  possible: 

1. No error  occurred. 

2. The e r r o r  is not  detectable. 

Correction:  For  the  Hamming  distance of three,  correction  can be performed i f  a single  ele- 
ment is disturbed. 

If an information  element is disturbed ( v 2 3 ) ,  

q, = f V  z v - 3  # 0 .  

4 



q, indicates  the  error  pattern of the  disturbed  element.  The  minimum  number u for which 
q,  z-"  = q ,  is u = v - 3. Thus u + 3 = v is the  position of the  erroneous  element. 

If a check  element is disturbed (V = 1 o r  v = 2) ,  either q, = f v  f 0 , q, = 0 , o r  q, = 0,  

q2 = f "  # 0. 

If no element is disturbed, q1 = q,  = 0 .  

Hardware 

Encoding 

Source  symbols are serially  shifted  into two shift  registers, (Y, Y, ), where  the  parity ele- 
ments a l  and a2 are  generated; see Figure 2. The "flip-flops" (Y,,, ) of the  feedback shift  register 
Y, , store  the  vectors Y, = (Y, , . Y,, s - l  ), or  in polynomial representation, Y, ( 2 )  = y, , t yk. , z 

+ e . .  t 
y k .  5 - 1  " 

Starting with the  contents y ,  = y, = 0 the following operations are performed: 

a. s shifts of the  input and the  registers Y, and Y, to the  right  with S, = 0 add the  elements 
a"  to y ,  and y , .  Simultaneously a v  comes to the  output. 

b. One shift of Y, to the  right  with S, = 1 multiplies y ,  by z mod p( z). 

Repeating  the  operation n - 2 times  yields y = a , 
and Y,  = a, by Equation 1. After  switching S,, 

2 s  shifts of both Y, and Y, (s ,  = 0 )  to  the  right 
causes a ,  and a ,  to come  to  the  output. 

INPUT OUTPUT 
'3.0. ..'3,s.1 .bn.O, ,"n ,s.? 

Decoding 

See Figure 2. Decoding circuitry  consists 
of hardware  similar to  the  encoding  hardware 
with  the  addition of a word detector (Y, = Y , ). 
Also, Y, must be  capable of being  shifted  to  the 
left. 

Syndrome: By repetition of the encoding 
procedure  the following a r e  obtained: 

y, = a3' t a4' + - + an' 

~ 

ENCODER 

I 

I I I ( WORD DETECTOR 
(Yl = Y g ?  ) 

Figure 2-Hamming  code  encoder  and  decoder. 
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The  first s parity  bits ( a; ) are shifted  into Y, (SI = 0); the  next s parity  bits ( a,' ) are shifted 
into Y, ; this  forms  the  total  syndrome. 

The  information  elements (a3', . . . , a,,' ) are stored  temporarily. 

Correction  Technique: An e r ro r  in  an information  element  results  in 

Y, = f "  % 0 ,  

y 2 = f v  z v - 3  # 0 

Multiplying y2 by z-' (performed by u shift of Y ,  to the  left with s, = 1) gives y, z- "  = y, a t  the 
position v = u + 3 with a,' shown to be the  element in error .  

If a check element is disturbed,  the  condition y, z - ~  = y, will  never  be  achieved,  and  no infor- 
mation  element is assumed  to be in  error.  

If no error  occurs,   the condition Y, z- "  = y, will  be achieved by u = 0,  and y1 = Y, = 0 will  be 
added  to a;. 

If more  elements  are wrong, no error  correction is attempted and this data is erased. 

QUANTITATIVE  RESULTS 

At the  receiver,  the  noisy  data is processed  first by an  inner  decoder and  then by an outer  de- 
coder. The inner decoder  uses  correlation and a maximum-likelihood  detector to detect  the  binary 
elements of length "s".  The  probability of element  error p( s )  at  the output of the  inner  decoder 
can be calculated  from  the  expression 

where s is the  number of symbols  per  element,  and SNR is the  signal-to-noise  ratio  defined as sig- 
nal  energy  per  symbol  per  single-sided  noise  power  density  (see  Reference 1). From  the  inner  de- 
coder  the  detected  binary signal with e r r o r s  is passed to the outer  decoder  for  parity  checks on 
each block of data. 

6 



Parity  checks are performed by a detector  and  then by the  corrector.  The following algorithm 
is used  in  the  processing of each block of data: 

1. The  detector  detects  blocks  in which there   are  known e r ro r s ,  and passes  these  blocks to 
the  corrector.  The  remaining  blocks,  considered  to  possess  the  highest  confidence,  are 
passed  to  the  user. 

2. The  corrector  corrects  blocks which  have t or fewer  element  errors,  where t is the Max- 

imum  number of possible  correctable  error  elements. It then discards those  blocks  which 
it determines  to have more than t element  errors. 

If the  user  requires his data to  have  the  highest  possible  confidence,  only the data  from  the 
detector is used.  However, i f  the  user is willing  to sacrifice  confidence  for  data  quantity,  the  cor- 
rector  data  may  be included  with the  detector data. Of course,  the  corrector data can always carry 
a flag  with it, indicating its lower  confidence  level. 

Synchronization 

In this  paper,  element and block  synchronization are  assumed  to be perfect, and it is assumed 
that  the  biorthogonal  code  vectors are  synchronized with  the  block.  Even though synchronization 
is assumed, no loss  in  generality  occurs in  the  following derivation  because  element  synchroniza- 
tion,  which is needed to perform  the  correlation and maximum-likelihood  decision, can easily be 
derived  from  biorthogonal  code  vectors.  This  element  synchronization  property of the  biorthogonal 
code set  can  be  enhanced by using a co-set code  to  maximize the comma  freedom  property  (see 
Reference 2). Block synchronization  can  be  acquired by minimizing  the  discard  rate.  Synchroni- 
zation of the  biorthogonal  code  vectors with the block is by design. 

ability of bit e r r o r  at the  corrector output is PB., 

and the  combined  probability of bit e r r o r  is PC. 
A, through A, a r e  defined to be  the  data  quanti- 
ties  (normalized to unity) at the  indicated  places 
in the figure. P A ,  P, , PC, and A, through A, a r e  
calculated below. First ,  however, some  expres- 
sions  from which the error  detection/correcting 
capability  can  be  determined  must be developed 
to  relate  the  generalized  Hamming  distance  to 
the block  length. 

The  generalized Hamming  code vector has 

Basic  Equations L 

In Figure 3 ,  probability of bit e r ro r   a t  the p, - DETECTOR 
PA 

detector output is defined as P,, the  prob- A 2  

- 

U 

a length of n elements, k information  elements Figure  3-Detector-corrector processing. 
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and m check  elements.  Each  element  length  consists of s symbols.  The  described  code is a spe- 
cific  case of a Reed-Solomon  code,  in  which  the  minimum  distance, d, between elements is related 
to  the  number of check  elements, m, by d = m + 1. The  maximum  number of correctable  elements 
per block, t , is related  to the  check  element by m = 2 t .  

1. The  following is a calculation  to  determine  the  normalized  data  quantities A, and A 2 ,  and 
the  probability, PA, of bit e r r o r  at the  detector output. 

The  probability, Po , that a block of m elements  has no e r r o r s  is: 

where p is the  probability of element  error. One property of the  code is that all e r r o r s  of the  min- 
imum  distance d can  be  detected.  Therefore,  the  probability, P, , that d o r  more  element  errors 
exist in the block is: 

Then  the  probability, P, , of undetectable e r r o r s  is that  fraction of P, which is: 

P, = 2-m" P, . 

The  quantity of data, A, , at the  detector output  can now be  calculated  from  the  above  expression: 

A, = P, + 2 - m ~  p3 

The  probability, PA , of bi t   error  at the  detector  output is 

where  the  probability of block e r r o r  is the  first  term of P A ,  given  immediately below. 

2-""  P, 

Po + 2 - m "  P, 

The  approximate  conditional  probability of word e r ro r ,  given  that a block is in error,  the  second 
term of PA , is 



and P,, represents  the  conditional  probability of bit   error,  given  that a word is in error.   For a 
biorthogonal  inner  coder  with s greater than 5, P,, is approximately  equal  to 1/2. 

Blocks of data which are known to  contain e r ro r s  are passed to  the corrector to  be reprocessed, 
The  quantity of data A, is equal  to 1 - A , .  

2. The  following is a calculation of the  quantities of corrected  data, A, , and  discarded  data, 
A , ,  and  the  probability, PB , of a bit  error  in  the  corrected  data. 

Assume  that all blocks of data with t or  fewer  elements  in  error are Correctable.  Then  the 
probability, P, , that  there  are  only  correctable  errors  in a block is determined  from  the  binomial 
expression 

The  probability, P, , of uncorrectable  error  in a block (the  probability  that  more  than t ele- 
ments in a block are  in  error)  can be determined  from 

The  fraction, H ,  of uncorrectable  data  that is passed by the  corrector is 

The  fraction of all  incorrect  data which is passed by the corrector is P, . H .  The  data  quantity, 
A 4 ,  at the  corrector  output  can be  predicted  from  the  expression 

The  data  quantity, A, , which is discarded as uncorrectable is given by 

The  probability of bi t   error   a t  the  corrector  output is given by 

9 



and an approximation of the  conditional  probability of word  error,  given  that  the  block is in  error ,  
the  second  term of P, is 

P,, is the  conditional  probability of bi t   error  given a word is in e r ror .  

3. The  quantity of data, A, , and  the  probability, PC , of bit e r ro r  of the  combined  data  from 
the  detector  and  the  corrector are 

1(  

1c  

10 

a 
L 

10 

A, = A, + A, 

and 

[38. ,.. \ rn = 2  

If the  channel  information  rate is to remain 
constant after coding,  an increase  in  channel 
bandwidth is required to  send  the  check  elements. 
This  increase  in bandwidth will  result  in  a  lower 
effective SNR. The  change  in SNR from the situ- 
ation when check  elements  are  sent, to  that when 
no check  elements  are  sent, can  be  computed  from 
the  equation 

ASNR = 10 l og  m+k I 

m 

where (m  + k)/m is the  increased bandwidth fac- 
tor  required by the  Hamming  code  vectors. 

The  probability, P, ) of bit   error at the  de- - .. 
0 1 2 3 4 5 6 

S N R  tector  output  varies as a function of SNR as 
shown in  Figure 4. For these  curves,  at a con- 

Figure  4-Probability of bit  error at  detector  output for stant two check  per  block,  the 
various SNR with m = 2, s = 6. length k was  varied  from two to  twelve  elements. 
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This  generated  the  codes  (4,2),  (6,4),  (10,8),  and (14,12). The first number  in  the  parentheses  rep- 
resents  the  total  number of elements  per  block (m + k), and the  second  number  represents  the  num- 
ber of information  elements  per  block (k). It was  also  assumed  that  the inner coder  used a bi- 
orthogonal  code of length six. The  numbers shown in  brackets  in  Figure  4  denote  the  percentage 

' of data having  detected  errors.  Figure 5 shows a family of iso-probabilistic  curves  in  which  the 
SNR can be determined  from a given  block  length  and a given  bit e r r o r  rate. The  curves of Fig- 
ure  5 a r e  a replot of the  data  used in Figure 4. 

The  next set of data  was  obtained  after  the  operations of detection  and  correction  had  been 
performed.  Figure  6  shows a family of curves  in which  the  probability, PC , of bit  error  for  the 
combined  outputs of the  detector  and  corrector  varies as a function of  SNR. Figure 7 is a family 
of iso-probabilistic  curves  in which  the SNFt can  be  determined  from a given  block  length  and a 
given  bit e r r o r  rate. 

Codes  were  selected  to  maintain a constant  information-to-transmitted  symbol  rate of 2/3. 
This was achieved by varying  both  the  number of check  elements  and  the  number of information 
elements  per block.  Codes  considered  were  (6,4),  (12,8),  and (18,12). Table 1 shows  the  prob- 
ability, PA, of bi t   error  at the  detector  output 
and  the  percentage of detected  errors  for  vari- 
ous SNFt and  codes. 

I I I I I 1 
m = 2  
s = 6  

Figure 5-lso-probabilistic curves  as a  function  of k 
with m = 2, s = 6; for error detection  only. 

1 

J I 1 I I I I 
1 2 3 4 

S N  R 
5 6 

Figure 6"Probability of bit error after error correction 
for various S N R  with m = 2, s = 6. 
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4 -  
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0 2 4 6 8 10 12 
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Table 1 

Probability, PA , of Undetected  Bit Error and  the 
Percentage of Detected Errors for  Various 

Hate-2/3  Codes as a Function of SNR. 

SNR A, in % PA 
2.76 db 

0.017 3.13 X 10-17 7.76 
0.21 5.33 X 1 0 - l ~  6.76 
1.4 1.76 x lo-"  5.76 
6.3 1.60 X 10-9 4.76 

18.5 5.26 X lo -*  3.76 
39.1 8.35 x 

2.76 db 5.20 X 10"l 62.9 
3.76 5.20 X 1 0 - l ~  33.6 
4.76 1.54 X 10-15 12.2 
5.76 

0.42  5.19 X 6.76 
2.8 8.46 X 10-19 

2.76 db 3.61 x 77.4 
3.76 5.80 X 45.9 
4.76 1.69 X 17.7 
5.76  4.54 x 10-26 4.28 

Figure  7-Iso-probobilistic  curves as a  function of k 
with m = 2, s = 6; with error corrections. 

I I I \  I I I 
Probability of bit  error  for the  combined 

outputs of the  detector  and  corrector is shown 
in  Figure 8 for  various SNR and  rate-2/3  codes. 
The  numbers  in  brackets  indicate  the  percentage 
of data  that is detected in error .  

APPLICATION OF CODE [6,4] TO THE 
MARINER  MARS  SPACECRAFT 

1 o - ~  - 

C L  

Mariner Mars Probe 1971 is an  orbital 
mission on which an infrared  interferometer 10"- 

spectrometer (IRIS) experiment  (Reference  3) 
and a television  experiment  are to  provide in- 
formation  about  the  Martian  atmosphere and 
surface.  The  spacecraft  telecommunication 
channel was designed  primarily for the  tele- 
vision  experiment,  which  does not require a 
data  confidence as great as that of the IRIS ex- 
periment.  Under  worst-case  conditions,  the lo.' o 1 2 3 4 5 6 

confidence  required by the IRIS experiment is 

- 

[A,] % DATA FLAGGED -[.00367] 

I 

SNR 

Orders Of greater than Figure  8-Probability of bit error after error correction 
that  which  the  telecommunication  c  h a n n  e 1 for rate 2/3 codes, s = 6, for  various SNR. 
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provides.  This  higher  confidence  requirement of the IRIS experiment  was  met by concatenating 
the IRIS source  data with a (6,4) Hamming  code  before  using  the  existing  Mariner  sixth  order  bi- 
orthogonal  code. 

Performing a Fourier  transformation on  the IRIS data  should  give a radiation  spectrum  from 
the  interferogram. A typical  infrared  interferometer  interferogram of an  atmospheric  emission 
for a warm blackbody  calibration is shown in  Figure 9. The  spectrum which was  derived  from  that 
interferogram is shown in  Figure 10. Also shown in Figure 10 is the effect of an  error  on  the  spec- 
trum. Note that  information  about  the  atmospheric  content is masked by an  oscillatory wave. 

PARITY 8’ 

APPLIED TO THIS DATA 
ERROR CORRECTION 512 

1>- - 1  ! 

I I 

WARM BLACKBODY  CALIBRATION +i 
q J ?  L - 

V I S U A L  8 COMPUTER DECISIONS T V I S U A L  8 COMPUTER D E C I S I O N S 1  

I I 

I I 

I I 
I I 

I I 

2303 

r- 4096 OR DS 

I I 

Figure 9-Infrared interferometer  interferogram. 

High data  confidence is only required  for 
the  center  portion of the  interferogram,  for this 
data has little redundancy.  Therefore, i t  is this 
center  portion of the data  which is concatenated- 
coded.  One error  here could cause  the  frame  to 
be discarded  or  misinterpreted. Coding is not 
required  for  the two side  portions of the  inter- 
ferogram  because  this  data is highly redundant 
so that e r ro r s  are easily  detected at the  ground 
processor  before  the  Fourier  transformation is 
performed. 

The IRIS experiment  data is formatted  to 
start  each  frame  with 64 words of housekeeping Figure 10-Spectrum of interferogram. 
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data. This is followed by 4096 words of the  interferometer  data and 64 more  words of housekeeping 
data.  The  remaining  unused  501  words are set to  zeros.  These 501 words  make  the IRIS frame 
compatible with the TV frame. Each  word of the  frame  consists of 12 bits. 

Coding requirements  specified by the  experimenter  were: 

1. The  probability of bit   error  was not to exceed 1 x even  under  worst-case  conditions. 

2. The IRIS data  format  was  not  to be  disturbed. 

3. An encoder  failure w a s  not to affect  the  experiment  data. 

Requirement 1 was satisfied by choosing  the  Hamming  code (6,4). For schemes  using  just  the 
biorthogonal  code  and  the  concatenation of the (6,4) code  with  the  biorthogonal  code, a plot of prob- 
ability of bit error  versus  the  time  that  the  spacecraft is in Martian  orbit is shown in  Figure 11. 
These  curves  are shown  both for the nominal  telecommunication  channel  and  for  the  worst-case 
conditions.  Since  the  check  elements  utilize  part of the  unused  501  words at the end of the  frame,no 
additional  bits or  bandwidth penalties  occur.  These  curves  were drawn under  the  assumption  that 
the IRIS data  words  are not  synchronized  to  the 
biorthogonal  code  vectors. If the systemis  syn- 
chronized,  the  bit e r ror   ra te  will  decrease  ap- 
proximately by a factor of 10 (see  Figure 12). 

r I ~ ,aPOS. 2 (high ga 

CONCATENATED 

ERROR CORRECTION 
NON-SYNCHRONOUS 

-1 971 1 972 - 
DAYS IN ORBIT 

Figure 11-comparison of coding  techniques 
for Martian  orbit. 

I I I I I I 
I 
I 
I 

\ I  

10.6L 
1 2 3 4 5 6 7 8 

S N R  

Figure  12-Probability  of bit error  after correction vs 
S N R  for  concatenated (6,4) synchronous  and  non- 
synchronous systems  as referenced  to  a  biorthogonal 
(s = 6) code. 
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Requirement  2  was  satisfied by not  changing  the real-time  sending of biorthogonal-encoded 
interferometer  data.  The 501 unused  words  in  the  original  format  were  partially  filled  with  the 
check  words.  The  real-time  data  were  simultaneously  biorthogonally  coded  and  sent  to  the Ham- 
ming  encoder.  The  resulting  Hamming  check  elements  were  stored  until  the 501-word  block time 
occurred, whereupon  they were  biorthogonally  encoded and transmitted. 

Requirement  3  was  satisfied by designing  the  encoder so that i f  failure  occurred,  the  check 
elements would be in   e r ror  and the data confidence level would revert  to  that  which  the  biortho- 
gonal  code vectors would normally  provide. 

Encoding 
The (6,4) Hamming  encoder  receives  the , 

IRIS source  symbols  and  reformats  them s o  
that  each  code  vector (block) consists of two 
12-symbol  data  elements  and  one  12-symbol 
check  element.  This  encoding  can  be  accom- 
plished  with two 6-symbol  shift  registers and 
feedback  networks as shown in  Figure 13. One 
of the registers  generates a 6-symbol  column 
check element;  the  other  register  generates a 
6-symbol  word  check  element. I 

CLOCK 

The  encoding procedure is accomplished  in 

Z E R O  - BITS 1-5 

ONE - BIT 6 

four  steps : Figure 13-Hamming (6,4) encoder. 

1. Set the  registers  to  zero  state. 

2. Shift 24 information  syn;bols  simultaneously  into  the two shift registers and to the  biortho- 
gonal  encoder.  The  binary  status of the  shift  registers  after  the 24th information  symbol 
has been  shifted,  constituting  the  complement of the  check elements  transmitted. 

3 .  Disable  the  feedback  circuitry. 

4. Shift  the  contents of these  shift  registers  into  storage.  This  storage will  be read  into  the 
biorthogonal  encoder  during  the  previously  unused 501 word times. 

Decoding 
To decode  the  (6,4)  Hamming  code  vectors, a circuit  similar  to  the  encoder  can  be  used with 

the  exception  that  the  circuit  should  be  able  to  shift  to  the left as well as to  the  right.  The  decod- 
ing  procedure is accomplished in four  steps: 

1. Set  the registers  to  zero state. 

2. Shift 24 information  symbols  into  the two shift registers. 

3. Compare  the states of the  shift  registers  to  the  transmitted check  symbols. 

(a) If the  compared  elements agree or  if only one of the  elements  disagrees,  the 24 in- 
formation  symbols are assumed  correct. 
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(b) If both  check  elements  disagree, an e r r o r  i s  assumed  to  have  occurred  in  the 24 in- 
formation  symbols. 

4. If 3(a)  occurs,  the registers are reset to  zero  and  the  procedure is repeated on the  next 24 
information  symbols. 

5. Lf 3(b)  occurs,  the  binary states of the registers are compared to the  transmitted  check 
symbols. 

(a) If the  patterns  agree, the e r ro r s  are assumed to  be in  the last information  element of 
the  block,  and  the  symbol  positions  which  indicated  an error  are  corrected.   The 24 
information  symbols are assumed  error-free,  and  step 1 is repeated. 

(b) Lf the  patterns  disagree,  the  contents  in  the  word  check  .element  shift  register are 
shifted one position  to the left.  Comparisons  are  again made. If the error  patterns  cor- 
relate,  the  error is assumed  to  occur  in  the  previous  information  element of the block. 
The  registers which indicated a n  error  are  those  positions which are  corrected.  After 
correction,  the block is assumed  error-free, and step 1 is repeated.  Corrected  blocks 
may be flagged as having  higher  probability of bi t   error  than  the  uncorrected  data. 

(c) If the  patterns  disagree,  the  contents of the word-check  element shift regis ter   are  
shifted  one  position  to  the  left, and comparisons  are  again made. If the error  patterns 
agree,  the  previous  information  element of the  block is assumed  in  error. If the e r ro r  
patterns  disagree, one more  shift is attempted. If the  patterns do not correlate  after 
the  third  shift,  the  error is assumed  to  have  occurred  in  more  than one word,  and  the 
block is flagged as having an  uncorrectable  error. 

CONCLUSION 

One advantage of concatenated  coding is that  each  experimenter  can be provided  with h i s  own 
reliability  (confidence  level).  The  telecommunications  channel  may be designed  for  the  lowest 
confidence  level not loading  the  channel with the  experiments  requiring  higher  confidence.  The 
experimenter  requiring  higher  confidence would be given extra  bits  for coding. 

With a concatenated  code as used on Mariner 71, which  consists of a biorthogonal ( s  = 6) and 
a generalized  Hamming  code (6,4), the  following  characteristics  can  be  noted: 

(1) The  probability of bit   error at nominal signal level as received  from M a r s  is improved 
by two orders  of magnitude i f  the  generalized  Hamming  code  elements  (words) a r e  not 
synchronized  to  the  biorthogonal  code  elements  and by three  orders  if  the  two codes a re  
synchronized. 

(2) The  experimenter's  data  format is not  disturbed  since  the  parity check elements are in- 
serted  into  the 501 unused  words at the  end of the  experimenter's  frame. 

(3) The  experiment's  data is unaffected if the  algebraic  coder fails. 
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(4) The  decoding of the  algebraic  code  can  be  achieved,  without a computer,  with  simple 
hardware  similar to  that  used  in  the  spacecraft  plus a six symbol  comparator. 

(5) The  decoding  procedure  allows  the  experimenter  to  select a processing  scheme which will 
maximize  data quantity for a given  probability of bit  error  threshold. 

Goddard Space  Flight  Center 
National  Aeronautics  and  Space  Adminisrrarion 

Greenbelt, Maryland, December 1, 1969 
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